FACULTY OF SCIENCES

SYLLABUS

FOR

B.Sc. (HS) CHEMISTRY
(Credit Based Evaluation & Grading System)
(FOR OLD STUDENTS)
(Semester : III-VI)

Examinations: 2019-20

GURU NANAK DEV UNIVERSITY
AMRITSAR

Note: (i) Copy rights are reserved.
Nobody is allowed to print it in any form.
Defaulters will be prosecuted.

(ii) Subject to change in the syllabi at any time.
Please visit the University website time to time.
B.Sc. (Honours School) Chemistry (Semester System)
(Credit Based Evaluation & Grading System)

SCHEME OF COURSE

Note: All Theory Papers having Mid Semester Marks: 20 & End Semester Marks: 80. Total Marks will be 100.

SEMESTER - III

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYL201</td>
<td>Organic Chemistry of Functional Groups-III</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>CYL206</td>
<td>Physical Chemistry-II</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>MTL241</td>
<td>Mathematics-III</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>PHL291</td>
<td>Modern Physics-II</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>ESL220</td>
<td>Environmental Studies (Compulsory ID Course)</td>
<td>4-0-0</td>
</tr>
<tr>
<td></td>
<td>PHP291</td>
<td>Modern Physics Lab</td>
<td>0-0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interdisciplinary Course-II</td>
<td>4-0-0</td>
</tr>
</tbody>
</table>

SEMESTER - IV

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYL211</td>
<td>Heterocyclic Chemistry</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>CYL212</td>
<td>Chemical Spectroscopy–I</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>MTL242</td>
<td>Mathematics–IV</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>PHL296</td>
<td>Physics</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td>CSL299</td>
<td>Computer for Chemists</td>
<td>2-0-0</td>
</tr>
<tr>
<td></td>
<td>CYP212</td>
<td>Physical Chemistry Lab–I</td>
<td>0-0-3</td>
</tr>
<tr>
<td></td>
<td>CSP299</td>
<td>Computer Lab</td>
<td>0-0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interdisciplinary Course-III</td>
<td>4-0-0</td>
</tr>
</tbody>
</table>

Note: PSL-053 ID Course Human Rights & Constitutional Duties (Compulsory Paper). Students can opt. this paper in any semester except the 1st Semester. This ID Paper is one of the total ID Papers of this course.
SEMESTER-V

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CYL-301</td>
<td>Organic Synthesis-I</td>
<td>3-1-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stereochemistry & Structure Reactivity Relationships</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CYL-303</td>
<td>Chemical Spectroscopy-II</td>
<td>3-1-0</td>
</tr>
<tr>
<td>4.</td>
<td>CYL-304</td>
<td>Ligand Field Theory</td>
<td>3-1-0</td>
</tr>
<tr>
<td>5.</td>
<td>CYL-305</td>
<td>Quantum Chemistry-I</td>
<td>3-1-0</td>
</tr>
<tr>
<td>6.</td>
<td>CYL-306</td>
<td>Physical Chemistry-III</td>
<td>3-1-0</td>
</tr>
<tr>
<td>7.</td>
<td>CYP-301</td>
<td>Organic Chemistry Lab-III</td>
<td>0-0-3</td>
</tr>
<tr>
<td>8.</td>
<td>CYP-302</td>
<td>Physical Chemistry Lab-II</td>
<td>0-0-3</td>
</tr>
</tbody>
</table>

SEMESTER-VI

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CYL-310</td>
<td>Co-ordination Chemistry</td>
<td>3-1-0</td>
</tr>
<tr>
<td>2.</td>
<td>CYL-311</td>
<td>Organic Synthesis-II Reactive Intermediates</td>
<td>3-1-0</td>
</tr>
<tr>
<td>3.</td>
<td>CYL-313</td>
<td>Instrumental Methods of Analysis</td>
<td>3-1-0</td>
</tr>
<tr>
<td>4.</td>
<td>CYL-314</td>
<td>Physical Chemistry-IV</td>
<td>3-1-0</td>
</tr>
<tr>
<td>5.</td>
<td>CYP-304</td>
<td>Physical Chemistry Lab-III</td>
<td>0-0-3</td>
</tr>
<tr>
<td>6.</td>
<td>CYP-305</td>
<td>Inorganic Chemistry Lab-II</td>
<td>0-0-3</td>
</tr>
</tbody>
</table>

Quantitative Analysis
B.Sc. (Honours School) Chemistry (Semester-III)
(Credit Based Evaluation & Grading System)

CYL201: Organic Chemistry of Functional Groups – III
Credit: 3-1-0 (45 hrs.)

Time: 3 Hours
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

SECTION-A

1. Phenols (5 Hrs)

2. Ethers, Epoxides and Sulphides (4 Hrs)

SECTION-B

3. Aldehydes and Ketones (7 Hrs)
4. Carboxylic Acids (5 Hrs)

SECTION-C
5. Carboxylic Acid Derivatives (5 Hrs)

6. Carbohydrates (7 Hrs)

SECTION-D
7. Amines (6 Hrs)
8. **Amino Acids, Peptides, Proteins and Nucleic Acids (6 Hrs)**

Books Recommended:

Suggested books:

6. Introduction to organic chemistry, Stritwieser, Heathcock and Kosover, Macmillan.
B.Sc. (Honours School) Chemistry (Semester-III)
(Credit Based Evaluation & Grading System)

CYL-206: Physical Chemistry-II
Credit: 3-1-0
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80
Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

SECTION-A (11Hrs)
1. Thermodynamics-I:
Definition of Thermodynamic Terms: System, surroundings etc. Types of systems, intensive and extensive properties, state and path functions and their differentials, thermodynamics process, concept of heat and work.
First Law of Thermodynamics: Statement, definition of internal energy and enthalpy, heat capacities at constant volume and pressure and their relationship. Joule's law, Joule-Thomson coefficient and inversion temperature. Calculation of w, q, dU&dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process.

SECTION-B (12Hrs)
2. Thermodynamics-II:
Concept of Entropy: Entropy as a state function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical change. Clausius inequality, entropy as a criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases.
Third Law of Thermodynamics: Nernst heat theorem, statement and concept of residual entropy, evaluation of absolute entropy from heat capacity data. Gibbs and Helmholtz functions; Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities. A &G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change. Variation of G and A with P, V and T.
3. Chemical Equilibrium:
Equilibrium constant and free energy. Thermodynamic derivation of law of mass action. Le Chatelier's principle. Reaction isotherm and reaction isochore - Clapeyron equation and Clausius-Clapeyron equation, applications.
4. **Colligative Properties:**
Raoult's law, relative lowering of vapour pressure, molecular weight determination. Osmosis, Law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point. Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, degree of dissociation and association of solutes.

SECTION-D (11Hrs)

5. **Chemical Kinetics:**

Books Suggested:

MTL241: Mathematics-III

Credit 3-1-0

Time: 3 Hours

Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

Section-A
Integral calculus: (8 Hrs)
Integral calculus: double, triple integrals, determination of C.G. using double and triple integrals. Integration by trapezoidal and Simpson's rule.

Section-B
Differential Equations: (8+7 Hrs)

Section-C
Partial differential equations (8 Hrs)

Section-D
(15 Hrs.)

Books Recommended:
5. Margenau Murphy – Mathematics for Physical and Chemists.
PHL 291: Modern physics-II
Credits 3-1-0
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

Section A
Frames of References: Inertial frame of reference, Galilean transformation, Galilean invariance of space & time intervals; Newton’s laws of motion; law of conservation of linear momentum & energy. Inertial and non-inertial frames and fictitious forces. Effect of rotation of earth on ‘g’. Effects of centrifugal and Coriolis forces produced as a result of earth’s rotation. Foucault’s pendulum and its equation of motion.
15 Lectures

Section B
The Lorentz Transformation: Newtonian relativity. Instances of its failure in electromagnetism, attempts to locate the absolute frame of reference, ether-drag hypothesis and Fizeau’s experiment. Michelson-Morley experiment, Lorentz-Fitzgerald contraction, Einstein’s basic postulates of relativity and geometric derivation of Lorentz transformation, Invariance of Maxwell’s equations, length contraction, relativity of simultaneity, synchronization and time dilation. Einstein’s velocity addition rule, transformation of acceleration. Twin paradox and its resolution.
15 Lectures

Section C
P.N. Junction: Intrinsic/Extrinsic semiconductor, Fermi level, Charge carriers in semiconductors, PN junctions, depletion region, current components in pn junction, Characteristic of pn junction diode, pn junction as rectifier, characteristics and applications of Zener diode, Photodiode, LED and photocells.
15 Lectures

Section D
Digital Principles: logic gates, AND, OR, NOT, NAND, NOR, XOR, XNOR. Number System: Decimal, Binary, octal, Hexadecimal.
15 Lectures

References:
(i) Optics by A.K.Ghatak.
(iv) Interated Electronics Millman & Halkias.
Teaching Methodologies
The Core Module Syllabus for Environmental Studies includes class room teaching and field work. The syllabus is divided into 8 Units [Unit-1 to Unit-VII] covering 45 lectures + 5 hours for field work [Unit-VIII]. The first 7 Units will cover 45 lectures which are class room based to enhance knowledge skills and attitude to environment. Unit-VIII comprises of 5 hours field work to be submitted by each candidate to the Teacher in-charge for evaluation latest by 15 December, 2019.

Exam Pattern: End Semester Examination- 75 marks Project Report/Field Study- 25 marks [based on submitted report] Total Marks- 100

The structure of the question paper being:

Part-A, Short answer pattern with inbuilt choice – 25 marks
Attempt any five questions out of seven distributed equally from Unit-1 to Unit-VII. Each question carries 5 marks. Answer to each question should not exceed 2 pages.

Part-B, Essay type with inbuilt choice – 50 marks
Attempt any five questions out of eight distributed equally from Unit-1 to Unit-VII. Each question carries 10 marks. Answer to each question should not exceed 5 pages.

Project Report / Internal Assessment:

Part-C, Field work – 25 marks [Field work equal to 5 lecture hours]
The candidate will submit a hand written field work report showing photographs, sketches, observations, perspective of any topic related to Environment or Ecosystem. The exhaustive list for project report/area of study are given just for reference:

1. Visit to a local area to document environmental assets: River / Forest/ Grassland / Hill / Mountain / Water body / Pond / Lake / Solid Waste Disposal / Water Treatment Plant / Wastewater Treatment Facility etc.
2. Visit to a local polluted site – Urban / Rural / Industrial / Agricultural
3. Study of common plants, insects, birds
4. Study of tree in your areas with their botanical names and soil types
5. Study of birds and their nesting habits
6. Study of local pond in terms of wastewater inflow and water quality
7. Study of industrial units in your area. Name of industry, type of industry, Size (Large, Medium or small scale)
8. Study of common disease in the village and basic data from community health centre
9. Adopt any five young plants and photograph its growth
10. Analyze the Total dissolved solids of ground water samples in your area.
11. Study of Particulate Matter (PM$_{2.5}$ or PM$_{10}$) data from Sameer website. Download from Play store.
12. Perspective on any field on Environmental Studies with secondary data taken from Central Pollution Control Board, State Pollution Control Board, State Science & Technology Council etc.
Unit-I

The multidisciplinary nature of environmental studies
Definition, scope and importance, Need for public awareness

(2 lectures)

Unit-II

Natural Resources: Renewable and non-renewable resources:
Natural resources and associated problems.
(a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
(b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
(c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
(d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
(e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
(f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

(8 Lectures)

Unit-III

Ecosystems
- Concept of an ecosystem
- Structure and function of an ecosystem
- Producers, consumers and decomposers
- Energy flow in the ecosystem
- Ecological succession
- Food chains, food webs and ecological pyramids
- Introduction, types, characteristic features, structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries)

(6 Lectures)

Unit-IV

Biodiversity and its conservation
- Introduction – Definition: genetic, species and ecosystem diversity
- Biogeographical classification of India
- Value of biodiversity: consumptive use, productive use, social, ethical aesthetic and option values
- Biodiversity at global, national and local levels
- India as a mega-diversity nation
- Hot-spots of biodiversity
- Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity

(8 Lectures)
Environmental Pollution
Definition
- Causes, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear pollution
- Solid waste management: Causes, effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution
- Pollution case studies
- Disaster management: floods, earthquake, cyclone and landslides

Social Issues and the Environment
- From unsustainable to sustainable development
- Urban problems and related to energy
- Water conservation, rain water harvesting, watershed management
- Environmental ethics: Issues and possible solutions
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
- Wasteland reclamation
- Consumerism and waste products
- Environmental Protection Act, 1986
- Air (Prevention and Control of Pollution) Act, 1981
- Water (Prevention and control of Pollution) Act, 1974
- Wildlife Protection Act
- Forest Conservation Act
- Issues involved in enforcement of environmental legislation
- Public awareness

Human Population and the Environment
- Population growth, variation among nations
- Population explosion – Family Welfare Programmes
- Environment and human health
- Human Rights
- Value Education
- HIV / AIDS
- Women and Child Welfare
- Role of Information Technology in Environment and Human Health
- Case Studies
Field Work
- Visit to a local area to document environmental assets river/forest/grassland/hill/mountain
- Visit to a local polluted site – Urban / Rural / Industrial / Agricultural
- Study of common plants, insects, birds
- Study of simple ecosystems-pond, river, hill slopes, etc

(Field work equal to 5 lecture hours)

References:
2. Down to Earth, Centre for Science and Environment, New Delhi.
9. State of India’s Environment 2018 by Centre for Sciences and Environment, New Delhi
1. To determine e/m by short solenoid method.

2. To determine e/m by long solenoid method.

3. To determine e/m by magnetron value.

4. To determine Ionisation potential of Hg.

5. To find planck’s constant using photo cell.

6. To determine electronic charge by Millikan’s Oil Drop Apparatus.
B.Sc. (Honours School) Chemistry (Semester-IV)
(Credit Based Evaluation & Grading System)

CYL-211: Heterocyclic Chemistry

Credit: 3-1-0
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

SECTION-A

1. Nomenclature of Heterocycles (4 Hrs)
Replacement and systematic nomenclature (Hantzsch-Widman system) for monocyclic, fused and bridged heterocycles.

2 Aromatic Heterocycles (5 Hrs)
Aromatic resonance energy, structure of six-membered heteroaromatic systems (pyridine, diazines, pyridones and pyrones), structure of five-membered heteroaromatic systems (pyrrole, thiophene, furan, azoles), bicyclic heteroaromatic compounds. Heteroaromatic reactivity and tautomerism in aromatic heterocycles

3. Non-aromatic Heterocycles - A (2 Hrs)
Strain – bond angle and torsional strains and their consequences in small ring heterocycles.

SECTION-B

4. Non-aromatic Heterocycles - B (4 Hrs)
Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,3-diaxial interaction.
Stereo-electronic effect – anomeric and related effects. Attractive interactions – hydrogen bonding and intermolecular nucleophilic-electrophilic interactions

5. Heterocyclic Synthesis (4 Hrs)
Principles of heterocyclic synthesis involving cyclization and cycloaddition reactions

6. Small Ring Heterocycles (4 Hrs)
Three-membered and four-membered heterocycles-synthesis and reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes and thietanes
SECTION-C

7. Benzo-Fused Five-Membered Heterocycles (4 Hrs)
Synthesis and reactions including medicinal applications of benzopyrroles, Benzofurans and benzothiophenes

8. Meso-ionic Heterocycles (4 Hrs)
General classification, chemistry of some important meso-ionic heterocycles of type-A and B and their applications.

9. Purines: Synthesis and Reactions (4 Hrs)
Approaches for the construction of purine ring, reactions of purines with electrophilic reagents, with nucleophilic reagents, reactions with bases, reactions of C-metallated purines

SECTION-D

10. Six-Membered Heterocycles with One Heteroatom (6 Hrs)
Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium & thiopyrylium salts and pyridones.
Synthesis and reactions of quinolizinium and benzopyrylium salts, coumarins and chromones.

11. Six-Membered Heterocycles with Two or More Heteroatoms (4 Hrs)
Synthesis and reactions of diazines, triazines, oxadiazoles and thiadiazoles

Books Suggested:
4. An Introduction to Heterocyclic Compounds, R.M. Acheson, John Wiley
6. Heterocyclic Chemistry, A. Paquett
B.Sc. (Honours School) Chemistry (Semester-IV)
(Credit Based Evaluation & Grading System)

CYL212: Chemical Spectroscopy – I
Credit: 3-1-0

Time: 3 Hours
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

SECTION-A

1. General features of Spectroscopy and Vibrational Spectra: (11 hrs.)
Units and conversion factors, Introduction to spectroscopy, Nature of radiation, Energies corresponding to various kinds of radiation, Intensities of spectral lines, selection rules and transition moments, Line widths, Broadening (Book 1)
Diatomic molecules, Force constants, Fundamental vibration frequencies, anharmonicity of molecular vibrations and its effect on vibrational frequencies, Frequencies of the vibrational transitions of HCl. Vibrational rotation spectra of CO, P,Q and R branches.

SECTION-B

2. Pure Rotational Spectra: (11 Hrs.)
Classification of molecules according to their moment of inertia. Rotational energy levels of hydrogen chloride. Determination of molecular geometry by rotational spectrum, isotopic substitution effects. Stark effect, Estimation of molecular dipole moments, Selection rules, Rotational Raman Spectra, anisotropic polarizability, specific selection rule in Raman Spectra, Stokes and anti – Stokes lines.

SECTION-C

3. Infrared and Raman Spectra: (12 Hrs.)
Vibrations of polyatomic molecules. Examples of CO₂, H₂ O. Mechanics of measurement of infrared and Raman spectra, absorption of common functional groups, their dependence on chemical environment (bond order, conjugation, H – bonding), Use of group theory to determine the number of active infrared and Raman active lines. Fermi resonance, combination bands and overtones, complications due to interactions of vibrations of similar frequency. Application of IR in structure elucidation of organic compounds – Carbonyls and effect of substituents on it, C-H, N-H, O-H vibrations and H-bonding – unsubstituted, mono and di-substitute aromatic compounds – Far IR region, Metal ligand vibrations, Group frequencies of complex ligands – CN stretching and effect of co-ordination on it. Nitro-nitrito- and C=O ligands and the effect of their co-ordination with metal ions and IR spectra.
4. UV and Visible Spectroscopy of organic molecules: (11 Hrs.)
Measurement technique, Beer – Lambert’s Law, molar extinction coefficient, oscillator strength and intensity of the electronic transition, Frank Condon Principle, Ground and first excited electronic states of diatomic molecules, relationship of potential energy curves to electronic spectra.

Chromophores, auxochromes, electronic spectra of polyatomic molecules, Woodward rules for conjugated dienes and α, β- unsaturated carbonyl groups, extended conjugated and aromatic sterically hindered systems, red shift, blue shift, hypo and hyperchromic effect.

References:
1. R.S.Drago, “Physical Methods in Chemistry”.
8. G.M. Barrow “Introduction to Molecular Spectroscopy”.
MTL-242: MATHEMATICS - IV

Credit: 3-1-0

Time: 3 Hours
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

Section A
Vectors Algebra:
(9 Hrs)

Section B
Vectors Calculus :
(12 Hrs)
Vector differentiation and integration of vectors. Vectors operators, Gradient, Divergence and Curl. Gauss, Stoke and Green's Theorem (Statement only) and their applications.

Section C
Laplace Transform:
(12 Hrs)

Section D
Fourier Series :
(12 Hrs)
Periodic Functions, Dirichlet Conditions, Fourier Series & Fourier coefficient, functions having arbitrary period, Sin and Cosine Series, half range expansions, Fourier integral (definitions), Harmonic Analysis.

Books Recommended:
5. Margenau Murphy – Mathematics for Physics and Chemists.
PHL 296: Physics

Credit 3 0
Max. Marks: 100
Mid Semester Marks: 20
End Semester Marks: 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

Section A
Forces between charges, concept of electric field. Flux of the electric field. Gauss’s law and Coulomb’s law. An insulated conductor, experimental proof of Gauss’s and Coulomb’s laws. Applications of Gauss’s law. Concept of electric potential. Relationship between potential, electric field strength and energy.

15 Lectures

Section B
The magnetic field, magnetic forces on a current, torque on a current, Biot-Savart Law and its applications. Hall effect. Ampere’s law. Magnetic field near a long wire, magnetic field of a solenoid.

15 Lectures

Section C

15 Lectures

Section D
Basic concepts of magnetism, diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimagnetism. Domains and hysteresis, magnetic anisotropy soft and hard magnetic materials, applications of magnetic materials, nuclear magnetism.

15 Lectures

Reference Books:
3. Introduction to Electrodynamics D.J. Griffiths.
CSL-299: Computer for Chemists

Credit: 2-0-0
Max. Marks: 100
Mid Semester Marks : 20
End Semester Marks : 80

Mid Semester Examination: 20% weightage
End Semester Examination: 80% weightage

Instructions for the Paper Setters:
Eight questions of equal marks (Specified in the syllabus) are to be set, two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

1. Computer programming in C language

SECTION-A
Principles of programming, algorithms and flowcharts.

Elementary programming, a typical C program, printf function.

Introduction of declarations, assignments and variables: concept of an integer, concept of a variable, rules for naming variables, assignment statement, arithmetic operators.

Integer arithmetic expressions, truncation effects, relative priority of arithmetic operators, use of parenthesis, modulus operator.

SECTION-B
Floating point numbers, scientific notation, converting integers to floating point and vice versa, coercion and cast operator, type char.

Decision making in C, scanf function, relational operators, logical operators, if statement, if else statement, nesting of if statement.

SECTION-C
Loop: do while loop, for loop, nesting of for loop.

Type char and ASCII code, character strings and how to print them, octal and hexadecimal notation.

User defined functions, returning value from a function, functions with more than one parameters.

SECTION-D
Arrays, declaring an array, initializing an array, break statement, strings and character arrays, sorting an array, finding maximum and minimum in an array, multidimensional arrays. Input and output.

Recommended Books:
1. To determine the molecular weight of a compound by Rast’s micro method.
2. Determination of coefficient of viscosity of a given liquid by viscometer.
3. To determine the unknown composition of a given mixture of two liquids by viscosity method.
4. To find the mol. wt. of high polymer by using viscosity measurements.
5. To determine surface tension of a given liquid by double capillary rise method.
6. Determination of surface tension of a given liquid by drop number method by stalagmometer.
7. To determine the unknown composition of a mixture of two liquids by surface tension measurements.
8. To determine the critical micelle concentration of a soap (sodium laurate) by surface tension measurements.
10. To determine the distribution coefficient of I₂ between CCl₄ and water.
11. Determination of transition temperature of given substance by thermometric method.
12. To find the water equivalent of the Dewar’s flask.
13. To find heat of neutralization of HCl using Dewar’s flask.
14. To determine refractive index of a liquid by Abbe’s refractometer and hence the specific and molar refraction.
15. To determine the unknown composition of a given mixture of two liquids by refractive index measurements.
16. To extract oil from given seeds with the help of Soxhlet apparatus.
17. To study the adsorption of acetic acid from its aqueous solution by activated charcoal.

Books Recommended:

1. Findlay’s Practical Physical Chemistry.
3. Quantitative Organic Analysis by Vogel.
CSP-299: COMPUTER LAB

Credit: 0-0-2

Development of small computer codes involving simple formulae in chemistry:

1. Calculation of mean, median, mode.
2. Solution of a quadratic equation.
3. Calculation of linear regression.
5. Calculation of Bohr orbit from de Broglie Lambda for electron.
6. Calculation of wave number and frequency from value of wave length.
7. Calculation of van der Waals radii.
8. Radioactive decay.
9. Rate constant of a 1st order reaction, 2nd order reaction.
10. Determination
11. Calculation of lattice energy using Born Lande equation.
13. Calculation of average molecular weight of a polymer containing n1 molecules of molecular weight m1, n2 molecules of molecular weight M2 and so on.
15. Calculation of reduced mass of diatomic molecule.
16. Calculate the RMS and most probable velocity of a gas.
17. Calculate the ionic mobility from ionic conductance values.
18. Determine the thermodynamic parameters for isothermal expansion of monoatomic ideal gas.
19. Calculation of value of g-factor from value of J and S.
20. Calculate the bond length and bond angles using crystal structure data.
1. Principles of Reactivity

2. Stereochemistry

Conformational analysis of cycloalkanes, decalins, effect of conformation on reactivity, conformation of sugars, steric strain due to unavoidable crowding, chirality, molecules with more than one chiral center, threo and erythro isomers, methods of resolution, optical purity, enantiotopic and diastereotopic atoms, groups and faces, stereospecific and stereoselective synthesis. Asymmetric synthesis. Zoptical activity in absence of chiral carbon (biphenyls, allenes and spiranes), chirality due to helical shape. Stereochemistry of the compounds containing nitrogen, sulphur and phosphorus.

3. Kinetic Isotope Effect

Theory of isotope effects. Primary and secondary kinetic isotope effects. Heavy atom isotope effects. Tunneling effect. Solvent effects.

4. Structural Effects on Reactivity

Linear free energy relationships (LFER). The Hammett equation, substituent constants, theories of substituent effects. Interpretation of \(\rho \) -values. Reaction constant \(\rho \). Deviations from Hammett equation. Dual-parameter correlations, inductive substituent constant. The Taft model, \(\sigma_F \) - and \(\sigma_R \)-scales.

5. Solvation and Solvent Effects

Qualitative understanding of solvent-solute effects on reactivity. Thermodynamic measure of salvation. Effects of salvation on reaction rates and equilibria. Various empirical indexes of salvation based on physical properties, solvent-sensitive reaction rates, spectroscopic properties and scales for specific salvation. Use of salvation scales in mechanistic studies. Solvent effects from the curve-crossing model.
6. **Acids, Bases, Electrophiles, Nucleophiles and Cataylsis**

7. **Steric and Conformational Properties**

Books Suggested:

2. Introduction to Theoretical Organic Chemistry and Molecular Modelling, W.B. Smith, VCH, Weinheim.
1. **General Features of Spectroscopy:**

Units and conversion factors. Introduction to spectroscopy, Nature of radiation. Energies corresponding to various kinds of radiation, Experimental techniques, intensities of spectral lines, Selection rules and transition moments, Linewidths, Broadening. (Book-1)

2. **Nuclear Magnetic Resonance Spectroscopy**

The nuclear spin, presessional motion. Larmor frequency, the NMR isotopes, population of nuclear spin levels, spin – spin and spin – lattice relaxation, measurement techniques (CW and FT methods). Solvent used, Chemical Shift, shielding constant, range of typical chemical shifts simple applications of chemical shift ring currents and aromaticity, shifts of 1H and 13C, inductive effect, ring current effect and anisotropy chemical bonds, intermolecular forces effecting the chemical shifts.

Spin – spin interactions, low and high resolution NMR with various examples. Correlation for H bonded to Carbon. 1H bond to other nuclei such as nitrogen, oxygen and sulphur. Complex spin – spin interaction. Interaction between two or more nuclei, splitting due to vicinal and geminal protons, long range coupling. ABX and ABC systems with their coupling constants, shifts reagents. Effects of chemical exchange, fluxional molecules, Hindered rotation on NMR spectrum, Karplus relationship. Nuclear magnetic double resonance, spin decoupling, Nuclear overhauser Effect (NOE). 13C 1H coupling, 13C spectra, Differences from 1H nmr, DEPT, Intensities of lines in 13C.

3. **Mass Spectra:**

Introduction, methods of ionization E1 & C1, Laser desorption, Fast Atom Bombardment (FAB). Secondary Ion Mass Spectrometry (SIMS), field desorption etc. Ion analysis methods (in brief), isotope abundance, Metastable ions, Electron Impact mass spectra, fragmentation patterns for aliphatic compounds, amines, aldehydes, ketons, esters, amides, nitriles, carboxylic acids ethers, aromatic compounds, general rules predicting the fragmentation patterns.

(Books 2, 3, 5)

Books:

1. C.N. Banwell “Fundamentals of Molecular Spectroscopy”.
1. **Symmetry** (5 Hrs.)
 Symmetry elements, symmetry operations, point group determination, determination of reducible and irreducible representations, character tables, use of symmetry in obtaining symmetry of orbitals in molecules, use of character table to determine which metal orbitals are used in \(\sigma \) and \(\pi \) bond formation in octahedral, tetrahedral and square planar transition metal complexes, qualitative splitting of s, p, d, f orbitals in octahedral, tetrahedral and square planar fields using character tables and without the use of character tables. (Text 2, 5, 7).

2. **Orbital Wave Functions** (5 Hrs.)
 Wave function and shapes of imaginary and real s, p, d and f orbital (cubic and general set in case of f orbitals), \(Z \)-component of orbital angular momentum, vector, imaginary and real d orbitals. (Text 1, 2).

3. **Crystal Field Theory** (10 Hrs.)
 Evaluation of \(V_{(x, y, z)} \), \(V_{\text{oct}} \), \(V_{\text{sq}} \), and \(V_{\text{tetragonal}} \), evaluation of \(V_{\text{oct}} \) in cartesian coordinates, effect of \(V_{\text{oct}} \) on d-orbital wave functions (Text 1 & 2).

4. **Interelectronic Repulsions** (5 Hrs.)
 Spin-spin, orbital-orbital and spin orbital coupling, L.S. and jj coupling schemes, determination of all the spectroscopic terms of \(p^n \), \(d^n \) ions, determination of the ground state terms for \(p^n \), \(d^n \), \(f^n \) ions using L.S. scheme, determination of total degeneracy of terms, order of interelectronic repulsions and crystal field strength in various fields, two type of electron repulsion parameters, term wave functions, Bra and Ket notation, derivations of single electron wave functions and their linear combinations for getting the term wave functions of all spectroscopic terms of \(d^n \) system, spin orbit coupling parameters (\(\lambda \)) energy separation between different j states (Texts 1 and 3).

5. **Free Ions in Weak Crystal Field** (5 Hrs.)
 The effect of \(V_{\text{oct}} \) on S, P, D and F terms (with help of the character table and qualitatively), splitting patterns of and G, H and I terms (Text 1 and 7).

6. **Free Ions in Medium and Strong Crystal Fields** (5 Hrs.)
 Strong field configurations, transition from weak to strong crystal fields, evaluation of strong crystal field terms of \(d^2 \) and \(d^3 \) cases in octahedral and tetrahedral crystal fields (using group theory), construction of the correlation energy level diagrams of \(d^2 \) and \(d^3 \) configurations in octahedral and tetrahedral fields, study of energy level diagrams for higher configurations, selection rules of electronic transitions in transition metal complexes, their proof using group theory, relaxation of the selection rule in centrosymmetric and non centrosymmetric molecules, Orgel diagrams, Tanabe Sugano diagrams, interaction of \(T_{1g} (P) \) and \(T_{1g}(F) \) terms. (Text 1, 2, 4 and 5).
7. **Electronic Spectra of Transition Metal Complexes** *(10 Hrs.)*
Variation of the Racah parameter, central field covalency, symmetry restricted covalency, differential radial expansion, intermediate coupling, nephelauxetic effect, spectrochemical series, band intensities, factors influencing band widths, variation of 10Dq, vibrational structure, spin orbit coupling, low symmetry components, Jahn-Teller effect, discussion of electronic spectra of octahedral and tetrahedral d1 – d9 metal ions, calculation of 10Dq and B with and without the use of Tanabe Sugano diagrams, low spin complexes of Mn$^{3+}$, Mn$^{2+}$, Fe$^{3+}$, Co$^{3+}$, Fe$^{2+}$, comment on the spectra of second and third transition series, spectra of K$_3$MoCl$_6$ and [Rh(NH$_3$)$_6$]$^{3+}$, spectra of cis and trans[Co(en)$_2$X$_2$]$^+$, [Mn(H$_2$O)$_6$]$^{2+}$, CuSO$_4$. 5H$_2$O and anhydrous complex, comparison of d – d band with f – f bands (*Texts 1, 2, 4 and 5*).

Recommended Books:

1. The Dawn of Quantum Mechanics (6 Hrs)
Black body radiation, Planck’s radiation law, photoelectric effect, Compton effect, De- Broglie hypothesis the Heisenberg’s uncertainly principle, Rydberg’s relation for explaining atomic spectrum of hydrogen. Functions, even and odd, well behaved functions, Operators and operator algebra.

2. The Schrodinger Equation: (10 Hrs)
Solution of classical wave equation by separation of variable method, Eigen value equation, Hamiltonian operator. Solution of particle in one, two and three dimensional box, Degeneracy, The Schrodinger Equation in general and its importance. Physical Interpretation of wave function.

3. Angular Momentum (8 Hrs)
Commutative laws, vectors, Angular momentum of one particle system, orbital angular momentum, the ladder operator method for angular momentum.

4. General Principles of Quantum Mechanics (12 Hrs)
Hermitian operator and some important theorems. Eigen functions of commuting operators. Postulates of quantum mechanics, the linear harmonic oscillator, the rigid rotator, Quantization of vibrational and rotational energies.

5. The Hydrogen Atom (5 Hrs)
Outline of various steps in the solution of the electronic Schrödinger equation for hydrogen atom, Radial and angular parts of the hydrogen atomic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals. Significance of Quantum numbers, orbital angular momentum and quantum numbers m_l and m_s.

6. Electron Spin (4Hrs)
Electron spin and Pauli’s Principle, Spin orbital, The Asymmetric wave functions for Heium atom in ground and excited state, Slater determinant for asymmetric wave function.

Books Suggested:

CYL306: Physical Chemistry-III

Credit: 3-1-0

Equilibrium Thermodynamics: (10 Hrs.)
Revision of zeroth, 1st, 2nd and 3rd Laws of thermodynamics. The work function and free energy relationships, the Gibbs Helmhotz equation, conditions of equilibrium, partial molar properties, physical significance of partial molar property, chemical potential, Gibb’s Duhem equation, Duhem-Margles equation, variation of chemical potential with temperature and pressure, fugacity, determination by graphical method, use of equation of state, generalized method for determination of fugacity. Variation of fugacity with temperature and pressure, fugacity of solids and liquids, Numericals.

Non-Equilibrium Thermodynamics: (10 Hrs.)
Thermodynamic criteria for non-equilibrium states, entropy production for heat flow, matter flow and electric current flows. Rate of entropy production, phenomenological equations, flows and fluxes, Onsager reciprocity relations, Principles of microscopic reversibility, Principle of minimum entropy production, electrokinetic effects, diffusion, electric conduction. Applications of irreversible thermodynamics to biological systems.

Solutions and Their Properties: (15 Hrs.)
Factors affecting solubility, types of solutions, thermodynamic properties of solutions, the solution process, condition for equilibrium between phases, equilibrium between a solution and its vapor phase, Ideal solution, the vapor pressure of ideal solution, vapor pressure of actual liquid pairs, boiling point diagrams of miscible binary mixtures, distillation of binary miscible solutions, Azeotropes, the fractionating column, ratio of distillate to residue, solubility of partially miscible liquid pairs; Maximum, minimum, maximum & minimum solution temperature type, type without critical solution temperature, vapor pressure and distillation diagrams of partially miscible liquid pairs, vapor pressure and distillation of immiscible liquids, solubility of gases in liquids, the Nernst distribution law, solutions of solids in liquids, chemical equilibria in solutions.

Dilute Solutions:
Henry’s Law, Freezing points of dilute solutions, determination of M. wts, the B. Pts of solutions, temperature and solubility in dil. solutions.

Phase Equilibria: (10 Hrs.)
Statement and meaning of the terms, Phase, component, degree of freedom, deduction of Gibbs phase rule.
Phase equilibria of one component systems – H2O, CO2 and S systems.
Phase equilibria of two component systems—determination of solid–liquid equilibria, simple eutectic diagrams of Bi–Cd, Pb–Ag systems, desilverization of Pb.
Solid solutions – compound formation with congruent M. Pt. – CuCl–FeCl3, Fe2Cl6–H2O and Mg–Zn.

Three Component Systems
Method of graphical representation, partially miscible three-liquid system – one partially miscible pairs, two partially miscible pairs, three partially miscible pairs, Applications of ternary liquid diagrams.
Books Recommended:

2. Physical Chemistry by G.W. Castellan.

3. Thermodynamics for Chemists, S.Glasstone.

CYP-301: Organic Chemistry Lab–III

Credit: 0-0-3

Note: All reactions in the following experiments are to be monitored by Thin Layer Chromatography (TLC) and characteristic data (UV-visible/fluorescence, IR, NMR, MS) is to be explained.
1. Nitration of o-chlorobenzoic acid and o-chloroacetanalide—separation and identification of isomers. (Ref. 1).
2. Dihydroxylation of cyclohexene with: (a) KMnO₄ (Ref 2) and (ii) p-toluene sulphonic acid/H₂O₂ (Ref 3) and HCO₂H/H₂O₂ (Ref 4, p 549) Compare product distribution by TLC.
3. Solvent-free Cannizzaro reaction of benzaldehyde (Ref 4, p 1029).
4. Preparation of fluorescein from resorcinol and phthalic anhydride (Ref 4, 3rd Edn., p 935).
5. Preparation of 1,3:4,6-di-O-benzylidene-D-mannitol. Also record its optical rotation (Ref 6, p449).
6. Preparation of 1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazole-3-one (antipyrine) Discussion about its pharmacology (Ref 4, p1150).
7. Preparation of 3,5-diethoxycarbonyl-2,4-dimethylpyrrole (Ref 4, p1151).
8. Preparation of 3,5-diphenylisoxazoline using 1,3-dipolar cycloaddition reaction (Ref 6, p646).
10. Synthesis of flavone (2-Phenyl-4H-1-benzopyran-4-one, 2-Phenylchromone) (Ref. 6, p 662).
11. Synthesis of tetraphenylporphyrin and its Cu²⁺ complex (Ref 6, p 683).

Books and references:
5. Techniques and experiments for organic chemistry by Addison Ault, 6th edition.
CYP302: Physical Chemistry Lab-II

Credit: 0-0-3

pH metry
1. Determination of strength of given strong acid (HCl).
2. To determine strength and dissociation constant of given weak acid (CH₃COOH).

Electrogravimetry
3. To determine %age purity of given salt (CuSO₄) solution.

Conductometry
4. Determine the equivalent conductance of a weak electrolyte at infinite solution by Kohlrausch’s law and determine the degree of dissociation and dissociation constant of the electrolyte.
5. To determine strength of given strong acid.
6. To determine strength of given weak acid.
7. To determine solubility of a sparingly soluble salt (PbCl₂/BaSO₄) in water at room temperature.

Potentiometry
8. Titration of strong acid solution (HCl) with NaOH solution using quinhydrone electrode.
9. Titration of a mixture of strong and weak acids (HCl + CH₃COOH) and hence the composition of the mixture.

Refractometry
10. To determine molar refractivity of given liquids and calculate the refraction equivalents of C, H and Cl atoms.

Colorimetry
11. To test the validity of Beer Lambert law.

Nephaloturbiditymetry
12. To estimate the concentration of ions of given salt solution.

Polarimetry
13. To determine specific and molecular rotation of an optically active substance (say cane sugar).

Flame Photometry
14. To determine the concentration of ions (Na⁺/K⁺) in given solution by drawing calibration curve.

Polarography
15. To verify Ilkovic equation.

Books Recommended:
1. Findlay’s Practical Physical Chemistry.
1. **Basic Coordination Chemistry** (8 Hrs.)
Werner’s theory, nomenclature of coordination complexes, isomerism in coordination complexes, chelating agents, metal chelates and chelate effect, names and abbreviations of important ligands, polydentate ligands, poly(pyrazolyl)borates, macrocyclic ligands, macrocyclic effect, ketoenolates, troplonates, tripod ligands, conformation of chelate rings, stereochemistry of coordination numbers 2–12 factors determining kinetic and thermodynamic stability.

2. **Nature of Bonding on Coordination Compounds** (20 Hrs)
Application of the valence bond theory to coordination complexes, the electroneutrality principle, the qualitative picture of the crystal field effects in tetrahedral, square planar, octahedral, trigonal, square pyramidal cases, pairing energy, factors affecting the CFSE, the use of crystal field theory in explaining magnetic properties of transition metal complexes, the thermodynamic effects of the crystal field splitting, the structural consequences of CFSE, the nephelauxetic effect of the spectrochemical series, the limitation of the crystal field theory, the ligand field theory, the Jahn–Teller theorem and its uses in explaining the distortions in the structures of electrically degenerate system, the molecular orbital treatment of the octahedral, tetrahedral and square planar complexes (qualitative picture only), the comparison of the VBT, CFT and MOT picture of bonding in case of transition metal complexes, the angular overlap model.

3. **General Properties and Magnetism** (7 Hrs)
Definition, general characteristics and positions of transition elements in the periodic table, division into d and f block elements and electronic configurations of the atoms and ions, origin of paramagnetism, diamagnetism, magnetic susceptibility and magnetic moment from magnetic susceptibility, Guoy method to determine the magnetic susceptibility, ferromagnetism, antiferromagnetism.
Electronic configuration of first transition series elements, comparative study of the first transition series elements with reference to atomic and ionic radii, ionization potential, redox potential, oxidation state diagram on the basis of redox potentials, Chemistry of scandium to copper with reference to relative stability of their oxidation states, magnetic and spectral properties. (Text 2).

4. **Structures of Important Complexes** (10 Hrs)
Structure of some important complexes of the first transition series (to be discussed in terms of coordination number, shape or oxidation states or nature of bonding), Ti(NO$_3$)$_4$, TiCl$_4$(diars)$_2$, [Ti(Oet)$_4$]$_4$, VF$_5$, VO(acac)$_2$ and nature of VO$^{2+}$ bond, [VOCl$_3$(NMe$_3$)$_2$], CrO$_4^{2-}$, Cr$_2$O$_7^{2-}$, [CrO(O$_2$)$_2$(bipy)], [Cr(O$_2$)$_2$(bipy)], nature of metal, peroxo bond, Cr$_2$(η2-acetate)$_4$ and the nature of Cr–Cr bond in this complex, tetrameric [Co(acac)$_2$]$_4$, tetrahedral complexes being more common in case of cobalt, oxidation of Co(II), complexes by molecular O$_2$, [Ni(acac)$_2$], Ni(DMGH)$_2$, [Ni(Me$_6$-acac)$_2$], [Ni(MeSal)$_2$],[Ni(CN)$_5$]$^{3-}$, anomalous behaviour of nickel(II) complexes, copper(II) acetate dihydrate, [Cu(CN)$_2$]$^{2-}$, cubane complexes [CuXL]$_4$ where X=halide and L=phosphine or arsine (this topic is to be covered from text 2 and 3).

Recommended Books:
1. Nature of Bonding in Organic Molecules 4 Hrs

Aromaticity in benzenoid and non-benzenoid compounds, alternant and non-alternant hydrocarbons, Hückel’s rule, annulenes, anti-aromaticity, ψ-aromaticity, homo-aromaticity.

2. Reactive Intermediates: Structure and Reactivity 4 Hrs

Generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes and nitrenes.

3. Aliphatic Nucleophilic Substitution 14 Hrs

The S_N2, S_N1, mixed S_N1 and S_N2 and SET mechanisms. The neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance. Nucleophilicity and SN2 reactivity based on curve cross model.

Classical and nonclassical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements. Application of NMR spectroscopy in the detection of carbocations. Relationship between polar and electron transfer reactions.

The S_N1 mechanism. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity.

4. Aliphatic Electrophilic Substitution 5 Hrs

Bimolecular mechanisms- S_E2 and S_E1. The S_E1 mechanism, electrophilic substitution accompanied by double bond shifts. Effect of substrates, leaving group and the solvent polarity on the reactivity.

5. Aromatic Nucleophilic Substitution 6 Hrs

The S_{NAr}, S_{N1}, benzyne an S_{RN1} mechanisms, Reactivity – effect of substrate structure, leaving group and attacking nucleophile. The von Richter, Sommelet-Hauser, and Smiles rearrangements.
6. Free Radical Reactions (6 Hrs)

7. Addition to Carbon-Carbon Multiple Bonds (6 Hrs)

Books Suggested:

CYL313: INSTRUMENTAL METHODS OF ANALYSIS

Credit: 3-1-0

3. Voltammetry and Polarography: General introduction, theoretical consideration of classical polarography, polarographic currents, effect of capillary characteristics on diffusion current, residual current, half wave potential. Effect of complex formation on polarographic waves and mixed anodic cathodic waves, oxygen waves, instrumentation, cell, electrodes and their modifications. Application of polarography. Modified voltammetric methods, viz.; current sampled polarography, (TAST), pulse polarography square wave, Fast linear sweep, Cyclic voltammetry, Hydrodynamic Voltametric, stripping methods, amperometric titrations and their applications. (14 hrs.)

4. Electrogravimetry and Coulmetry: Current voltage relationship, electrolysis at constant applied voltage, constant current electrolysis, coulometric methods of Analysis, potentiostatic coulmetry, Amperostatic Coulmetry, application of coulmetric titrations. (6 hrs.)
5. **Conductometric Methods:** Electrolytic conductance, relationships used in conductometry, variation of equivalent conductance with concentration, measurement of conductance, conductometric titrations, Applications to various types of titrations for detection of end points. **(5 Hrs.)**

6. **Turbidimetry and Nephelometry:** Theory of Nephelometry and Turbidimetry, Brief Instruments, applications. **(3 Hrs.)**

Books:

Recommended for Further Readings:
B.Sc. (Honours School) Chemistry (Semester-VI)
(Credit Based Evaluation & Grading System)

CYL314: Physical Chemistry-IV

Credit: 3-1-0

1. Macromolecules (20 Hrs)

Condensation polymerization, kinetics and statistics of linear stepwise polymerization, molecular weight control, addition polymerization, kinetics of polymerization, degree of polymerization and chain transfer, determination of rates constant, enthalpy, entropy, free energy and activation energy of polymerization. Ionic and condensation polymerization, kinetics of copolymerization, kinetics and rate of copolymerization, mechanism of copolymerization, various types of copolymerization Polymer solutions: criteria for polymer solubility, conformation of dissolved polymer chains, thermodynamics of polymer solutions. Molecular mass determination by osmometry, viscometry, light scattering and gel permeation chromatography. Polymer structure and properties, glass transition temperature (Tg), melting point transition temperature (Tm), structure property relations (general), Synthesis and properties of commercial polymers.

2. Adsorption and Surface Phenomenon (10 Hrs)

Surface tension, capillary action, pressure difference across curved surface (Laplace equation), vapor pressure of droplets (Kelvin equation), Physiosorption and chemisorption, adsorption isotherms, derivation of Langmuir, Freundlich, Tempkin and BET adsorption isotherms, estimation of surface area by BET equation, Heterogeneous catalysis, surface catalysed unimolecular and bimolecular reactions, Retarded surface reaction, temporary and permanent catalytic poisons, Activation energy for surface reactions, Thin films.

3. Colloidal State (5 Hrs)

4. Physical Properties and Molecular Structure (5 Hrs)

Optical activity, polarization - (Clausius - Mossotti equation), orientation of dipoles in an electric field, dipole moment, induced dipole moment, measurement of dipole moment, dipole moment and structure of molecules, magnetic properties; para-, dia- and ferro- magnetism.
5. Photochemistry (5 Hrs)

Books Suggested:

CYP 304: Physical Chemistry Lab-III

Credit: 0-0-3

Conductometry

1. Titration of a mixture of strong acid (HCl) and weak acid (CH₃COOH) against alkali.
2. Compare the relative strength of acetic acid and mono chloroacetic acid.
3. Titration of AgNO₃ with KCl solution.
4. Determine equivalent conductance of a strong electrolyte at several concentrations and hence verify Onsager’s equation.

Potentiometry

5. To titrate ferrous ammonium sulphate against potassium dichromate and hence the formal redox potential of Fe²⁺-Fe³⁺ system.
6. Determine the dissociation constant of given poly basic acid (oxalic/phosphoric acid).

PH metry

7. To determine pKa₁ and pKa₂ values of given dibasic acid (oxalic acid).
8. To prepare universal buffer solution.

Electrogravimetry

9. To find the content of Cu and Zn in the given mixture.

Flame Photometry

10. To determine the concentration of ions in given solutions.

Refractometry

11. To determine the electron polarization and electron polarizability of given liquids.
Colorimetry

12. To verify Beer Lambert law and determine stability constant of a complex by mole ratio method.
13. To investigate the complex formation between Fe(III) and thio-cyanate ion.

Chemical Kinetics

14. To investigate inversion of cane sugar in the presence of HCl.
15. To study the kinetics of hydrolysis of ethyl acetate by NaOH and determination of energy of activation.

Transport Number

Amperometry

17. To determine the Pb$^{2+}$ ion by its titration with K$_2$Cr$_2$O$_7$.

Books Recommended:
1. Findlay’s Practical Physical Chemistry.
A. Gravimetric Analysis

1. Determine nickel (II) in a given sample gravimetrically using dimethylglyoxime.
2. Estimate the iron as its ferric oxide from a given solution of ferrous ammonium sulfate gravimetrically.
3. Estimate chromium (III) as its lead chromate.
4. Estimate lead as its lead molybdate gravimetrically.
5. Estimate cobalt as mercury tetraisocthiocyanatocobalt (II) [HgCo (NCS)4]n.
6. Determine silver (I) as its chloride gravimetrically.
7. Determine barium (II) as its chromate gravimetrically.
8. Determine cadmium (II) as [Cd(C5H5N)2(SCN)2] gravimetrically.

B. Volumetric Analysis

(1) Acidimetry and Alkalimetry

 Determination of a mixture of carbonate and hydroxide.

(2) Oxidation – Reduction Titrations:

 (a) KMnO4 Titrations.

 (i) Standardisation with sodium oxalate.
 (ii) Determination of Fe(II)
 (iii) Determination of H2O2

 (b) Ceric Sulphate Titrations:

 (i) Standardisation with Mohr’s salt.
 (ii) Determination of Cu(II)
 (iii) Determination of oxalates.

 (c) K2Cr2O7 Titrations:

 (i) Standardisation with Fe(II)
 (ii) Determination of ferric iron (Ferric ammonium sulphate).
(d) **Iodometry and Iodimetry Titrations:**
 (i) Standardisation of sodium thiosphate with K2Cr2O7 / KIO3
 (ii) Determination of Cu(II)
 (iii) Determination of H2O2
 (iv) Determination of available chlorine in bleaching powder.

(e) **KIO3 Titrations:**
 (i) Determination of copper.
 (ii) Determination of hydrazine.

(3) **Precipitation Titrations**
 (i) AgNO3 – standardisation by Mohr’s method / by using absorption indicator.
 (ii) Determination of chloride.
 (iii) Volhard’s method for chloride determination.

(4) **Complexometric Titrations (EDTA)**
 (i) Standardisation of EDTA with Pb(NO3)2 / ZnSO4. 7H2O
 (ii) Determination of Mg2+
 (iii) Determination of Ca2+ (by substitution method).
 (iv) Determination of total hardness of water (permanent and temporary)
 (v) Determination of Cu2+ and Ni2+ by using masking reagent.

Book: Vogel’s book on Inorganic Quantitative Analysis